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Abstract—We present a framework for mobile robot navigation
in dynamic environments using Deep Reinforcement Learning
(DRL) and the Robot Operating System (ROS). Traditional
navigation methods often lack the real-time adaptability required
in highly dynamic settings. To address this, we leverage the TD7
algorithm—an extension of the Twin Delayed Deep Deterministic
Policy Gradient (TD3) algorithm incorporating state and state-
action embeddings—to directly map raw sensor inputs to control
actions. These embeddings, trained to minimize the mean squared
error (MSE) between the encoded state-action representation
and the transition-predicted next state, enhance the system’s
ability to model environment dynamics and improve navigation
performance.

Extensive simulations were conducted in custom Gazebo envi-
ronments of increasing complexity, ranging from open spaces to
scenarios with static obstacles and moving actors. Performance
was evaluated based on navigation success rate, time to goal, path
efficiency, and collision rate. Results indicate that this approach
consistently improves navigation performance, particularly in
highly dynamic environments.

Index Terms—Mobile Robot Navigation, Deep Reinforcement
Learning, ROS, Gazebo

I. INTRODUCTION

We are now in an era where robots have demonstrated
remarkable efficiency in controlled environments, such as
factories and warehouses, where they perform repetitive tasks
with high precision [1], [2]. These successes, however, un-
derscore a significant challenge when considering deployment
in dynamic, real-world settings [3], [4]. Despite substantial
advances in robotics, their widespread use in home assistance,
healthcare, and collaborative industrial environments remains
limited. The primary obstacle is the unpredictability and
complexity of these real-world settings, where human behavior
and rapidly changing conditions create a highly variable and
uncertain landscape [5].

In such environments, robots must not only navigate around
obstacles and adapt to evolving terrains but also interact
seamlessly with humans, who often behave unpredictably.
These tasks demand a level of adaptability and learning
that exceeds the capabilities of traditional robotic systems.
Therefore, developing robust navigation frameworks capable
of handling uncertainty and variability in real-time is essential
for the successful deployment of robots in dynamic settings.

Motivated by these challenges, this paper presents a nav-
igation framework for dynamic environments based on the
TD7 algorithm [6], which integrates state-action representation
learning, policy checkpoints, and the Twin Delayed Deep
Deterministic Policy Gradient (TD3) method. Unlike con-
ventional social navigation approaches that employ multiple
networks for separate tasks, our method is computationally
efficient. A key insight of this work is that incorporating next-
state prediction significantly improves navigation performance,
allowing robots to better anticipate and respond to environ-
mental changes.

II. RELATED WORKS

A. Conventional Navigation Approach

In robot navigation, two critical questions must be ad-
dressed: "Where am I and who is around me?" related to
mapping and localization; "Where am I going and how should
I get there?" involving path planning and obstacle avoidance.

1) Simultaneous Localization and Mapping: SLAM is a
process in which robots simultaneously construct a map of
an unknown environment while deducing their own location
within that map [7]. This problem is mostly considered solved
for static environments [8]. However, real-world applications
often involve dynamic elements that can degrade SLAM
performance.

Leveraging recent advancements in deep learning, there
has been progress in handling dynamic environments. Dy-
naSLAM [9] handles dynamic environments by leveraging
Mask R-CNN for semantic segmentation. It can identify and
segment dynamic objects, removing them from the SLAM
pipeline to prevent them from affecting the map. However,
the reliance on computationally intensive deep learning models
like Mask R-CNN poses challenges for real-time performance,
particularly on devices with limited processing power. Dy-
naSLAM II [10], unlike its predecessor, which focused on
removing dynamic elements, integrates the tracking of these
objects into the SLAM process, allowing for mutual improve-
ments in tracking accuracy and map consistency.

In summary, almost all theories and implementations of
current SLAM approaches are built on the static world as-
sumption, treating any moving objects in the environment as
outliers to the static model, which are intentionally ignored



during tracking and mapping [11], [12]. This idealized setup,
therefore, can only handle a small number of dynamic ele-
ments and is not suitable for many real-world applications,
particularly in environments where humans are present and
constant changes occur.

2) Path Planning: Planning is one of the fundamental
and most studied problems in robotics [13]. The basic mo-
tion planning problem is a geometric problem of finding a
collision-free path for a robot among rigid static obstacles [14].
Several extensions of the basic problem have been studied,
where, for instance, kinematic constraints (such as joint limits
and linkage configurations) and dynamic constraints (such as
forces, torques, and inertia) limit the robot’s motions, multiple
robots have to be coordinated, and moving obstacles have to
be considered. Therefore, the objective of path planning is to
guide the robot from an initial starting point to a target goal
while adhering to the robot’s motion constraints [15]. Often,
path planning is divided into two stages [16], [17]: global
path planning, which involves generating an overall route
considering the entire environment, and local path planning,
which focuses on real-time navigation and obstacle avoidance
based on immediate sensor data.

There have been various algorithms proposed for naviga-
tion in dynamic environments. These include methods such
as the social force model [18], originally used to describe
pedestrian dynamics, where motion is influenced by social
forces comprising several components, including acceleration
toward the desired velocity, distance from other pedestrians
and boundaries, and a term modeling attractive forces. The
reciprocal velocity obstacles method for real-time multi-agent
navigation [19] introduces a local, reactive collision avoidance
approach that implicitly assumes other agents use similar
strategies to generate safe and oscillation-free motions. How-
ever, most navigation strategies encounter the freezing robot
problem [3], which limits their applicability in highly dynamic
environments.

B. Deep Reinforcement Learning in Mobile Robot Navigation

There are, however, deep reinforcement learning (DRL)
based social navigation strategies that have been proposed over
the years. Reference [20] introduces a decentralized multi-
agent collision avoidance algorithm. The approach involves
training a pair of agents to navigate around each other to learn
a value network that encodes the expected time to goal and
then generalizing this network in a principled way to handle
multi-agent scenarios. Crowd-Robot Interaction [21] presents
an approach to improve robot navigation in crowded envi-
ronments by explicitly modeling interactions between humans
and the robot as well as between humans themselves using a
self-attention mechanism.

Unlike these methods, our approach is simpler and focuses
on improving navigation performance in dynamic environ-
ments by predicting the next environmental state.

III. METHODS

A. Formulation of the Problem of Mobile Robot Navigation
as a Reinforcement Learning Problem

1) State Space: The state space must encompass all relevant
information about the agent’s environment and its current
status. The environment is represented by laser scanner read-
ings, which are grouped into 20 bins. Each bin captures the
minimum distance to an obstacle within its field of view
(FOV). This method of binning reduces the complexity of the
raw sensor data while retaining essential information needed
for navigation. Fig. 1 illustrates how these laser scans are
aggregated into bins to construct the environment state.

Figure 1: Environment state formulated by selecting the short-
est range from each bin as a representative.

In addition to the environment state, the agent’s current
status is defined by four values: the distance from the goal
d, the relative heading to the goal (θ), and the linear (v) and
angular (ω) velocities that were executed in the previous time
step as depicted in Fig. 2. These parameters are crucial as they
provide the agent with information about its current trajectory
and position relative to the target goal.

Combining these elements results in a state space (S) with
24 dimensions. This state space is designed to be sufficiently
rich to capture the necessary details of both the environment
and the agent’s status, enabling the reinforcement learning
algorithm to make informed decisions during navigation.

2) Action Space: The agent, Pioneer P-3DX differential
drive mobile robot, can perform actions by altering its forward
velocity (v) and angular velocity (ω), resulting in a continuous
action space with 2 dimensions. The range for these actions
extends from [−1m/s,−1rad/s] to [1m/s, 1rad/s]. For prac-
tical reasons, we have constrained the agent to only execute
forward motions by clipping negative linear velocities. This



Figure 2: Formulation of the agent state based on target goal
and actions taken.

restriction is due to the laser scan’s 180◦ FOV, which makes
backward movement impractical as it would leave the agent
blind to obstacles behind it.

3) Reward Formulation: The reward function is designed
to guide the agent in achieving its navigation goals by encour-
aging the selection of optimal paths while avoiding dangerous
or sub-optimal actions. To this end, it is composed of three
key components. The first component provides positive rein-
forcement for reaching the target goal. The second component
imposes a penalty for collisions with obstacles. The third
component offers an immediate reward to discourage the agent
from coming too close to obstacles and from spending exces-
sive time to reach the goal. These components collectively
ensure that the agent navigates efficiently and safely towards
its goal.

R =


rt, if dt < GOAL_THRESHOLD,

rc, if dc < COLLISION_THRESHOLD,

ri, otherwise.
(1)

Where rt is the reward given when the agent reaches the
target goal, rc is the penalty incurred when the agent collides
with an obstacle, ri is the reward for other intermediate cases,
dt distance to target goal, and dc is distance to the closest
obstacle.

ri = α(v − |ω|)− c (2)

ri is directly proportional to the difference between v and
|ω|, which helps in achieving smooth motion. Furthermore, a
small constant negative reward (−c) is provided to encourage
the agent to reach the target in a shorter time period. The spe-
cific values of each parameter used in the reward formulation
are given in Table I.

Table I: Reward parameters.

rt rc α c

100 −100 0.5 0.001

B. Solution to the Problem of Mobile Robot Navigation in a
Dynamic Environment

The proposed solution leverages a DRL approach that
is grounded in the TD3 algorithm [22] and its recent ad-
vancement, TD7 [6]. TD3 is recognized for its effectiveness
in handling continuous action spaces and enhances training
stability through key techniques such as twin Q-networks and
delayed policy updates. Building on this, TD7 introduces state-
action learned embeddings, which facilitate the modeling of
environmental dynamics in a latent space. This enhancement
enables the network to better comprehend and adapt to changes
in the environment, thereby improving navigation performance
in complex, dynamic settings.

1) Network Architecture: To effectively capture dynamic
actors in the environment, enabling the policy to make more
informed actions, it is essential to predict the next state of
the environment accurately. TD7 employs a pair of encoders
(f , g). The encoder f(s) transforms the state s into a state
embedding zs, while g(zs, a) jointly encodes both the state
embedding zs and action a into a state-action embedding zsa.
This encoding process is designed to capture the relevant struc-
tures within the observation space and to model the transition
dynamics of the environment effectively. The encoders (f , g)
are jointly trained to predict the next state embedding, which
is decoupled from the training of the value function and policy.

Algorithm 1 Online TD7 Algorithm [6]

1: Initialize: ▷ Before training
- Policy πt+1, value function Qt+1, encoders (ft+1, gt+1).
- Target policy πt, target value function Qt, fixed encoders
(ft, gt), target fixed encoders (ft−1, gt−1).
- Checkpoint policy πc, checkpoint encoder fc.

2: for episode = 1 to final_episode do
▷ Data collection

3: Collect and store transitions using current policy, πt+1.
4: if checkpoint_condition then ▷ Checkpointing
5: if actor πt+1 outperforms checkpoint πc then
6: Update checkpoint πc ← πt+1, fc ← ft.
7: end if

▷ Training
8: for i = 1 to timesteps_since_training do
9: Sample transitions from LAP replay buffer.

10: Train encoder, value function, and policy.
11: if target_update_frequency steps passed then
12: Update target networks.
13: end if
14: end for
15: end if
16: end for

The embeddings are designed to capture the underlying
structure of the environment [6]. However, they may not
include all relevant information needed by the value function
and policy, such as features related to the reward, current
policy, or task horizon. To address this, TD7 concatenate the



Figure 3: TD7 network architecture used in the implementation.

embeddings with the original state and action, as shown in
Fig. 3. This approach allows the value and policy networks to
learn the necessary internal representations for their respective
tasks.

2) Agent Training: The training process was conducted
using a laptop, which is equipped with a 12th Gen Intel®

CoreTM i5-12500H processor featuring 16 cores. This setup
also includes an NVIDIA GeForce RTX 4050 Laptop GPU
and 16GB of RAM. The DRL agent was trained using the
TD7 algorithm, which is detailed in Algorithm 1.

IV. EXPERIMENTAL RESULTS

We have tested our system in a range of environments that
vary in complexity to assess its robustness and effectiveness.
For comparison purposes, we evaluated our system against a
baseline: Goal-Driven Autonomous Exploration Through Deep
Reinforcement Learning (GDAE) [23].

A. Test Environment 1: Environment with No Obstacle

To comprehensively assess the system’s performance, we
conducted five independent test runs. The results of our
experiments are summarized in Table II, where we compare
the performance of our method, against the baseline. In this
relatively simple environment, both methods were able to
guide the agent to the target goal with a 100% success
rate. The baseline method, however, exhibited slightly better
performance in terms of the average time taken to reach the
goal and the average distance traveled.

B. Test Environment 2: Environment with Static Obstacles

Similar to test environment 1, we conducted five test runs
in this environment. The data presented in Table III clearly

Table II: Environment one, result comparison.

Method Avg. Time(sec) Avg. Distance m Success Collision
Ours 11.5874 10.2191 1.0 0.0

Baseline 10.9508 9.4772 1.0 0.0

Figure 4: Agent trajectories for test environment one overlaid
on the map of the environment.

demonstrate that our method outperforms the baseline, partic-
ularly in terms of success rate and collision rate. Our method
consistently achieved a 100% success rate across all test runs,
successfully navigating to the goal without any collisions. To
ensure an accurate comparison, trajectories where the target
goal was not reached were excluded from the calculation of
average time and average distance traveled.

Table III: Environment two, result comparison.

Methods Avg. Time (sec) Avg. Distance(m) Success Collision
Ours 12.3035 9.9404 1.0 0.0

Baseline 10.5075 8.9495 0.6 0.4



Figure 5: Agent trajectories for test environment one overlaid
on the map of the environment.

C. Test Environment 3: Environment Shared with Other Actors

We conducted five test runs in this environment, and the
quantitative comparison is provided in Table IV. As the data
in this table indicates, our method outperformed the baseline
method across all metrics. However, while our method per-
formed well, it did not achieve a 100% success rate, indicating
that there is still room for improvement.

Table IV: Environment three, result comparison.

Methods Avg. Time(sec) Avg. Distance m Success Collision
Ours 6.0847 5.0845 0.8 0.2

Baseline 6.6669 5.6258 0.6 0.4

D. Summary of Performance Comparison with Baseline

This section summarizes the comparison of results with the
baseline across all environments. Fig. 6 presents a summary
of the performance comparison. The vertical axis represents
the three environments, while the horizontal axis displays
the values of the respective test metrics: meters for average
distance and percentage for success rate. In test environment 1,
both our method and the baseline performed well, achieving an
average success rate of 100%. However, in test environments
2 and 3, our method outperformed the baseline, particularly
in terms of success rate.

V. CONCLUSIONS

In this paper, we have presented a new framework for
mobile robot navigation in dynamic environments using DRL.
The proposed approach leverages the TD7 algorithm, an
enhancement of TD3 with state-action embeddings, to enable
efficient and reliable navigation in environments characterized
by both static and dynamic obstacles. The framework was
implemented using ROS and validated through extensive sim-
ulations in the Gazebo environment.

The experimental results from the three test cases demon-
strate that the proposed method outperforms the baseline
approach, particularly in complex environments, in terms of
success rate and collision avoidance. In simpler environments
without obstacles, both our method and the baseline achieved

Environment 1

Environment 2

Environment 3

10.22

9.94

5.08

9.48

8.95

5.63

Comparison of Average Distance Traveled (m)

Ours
Baseline

Environment 1

Environment 2

Environment 3

1

1

0.8

1

0.6

0.6

Comparison of Success Rate (%)

Ours
Baseline

Figure 6: Summary of performance comparison with baseline.

a 100% success rate. However, as the environment’s complex-
ity increased—with the introduction of static obstacles and
dynamic actors—our method consistently outperformed the
baseline.

While the proposed framework demonstrates strong perfor-
mance, several challenges remain. Future work could explore
embedding social norms into the navigation policy to im-
prove human-robot interaction in shared spaces. Additionally,
incorporating explicit human intent prediction and adapting
to diverse social contexts would further enhance the system’s
real-world applicability.
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